417 research outputs found

    Performance Analysis of a System with Bursty Traffic and Adjustable Transmission Times

    Full text link
    In this work, we consider the case where a source with bursty traffic can adjust the transmission duration in order to increase the reliability. The source is equipped with a queue in order to store the arriving packets. We model the system with a discrete time Markov Chain, and we characterize the performance in terms of service probability and average delay per packet. The accuracy of the theoretical results is validated through simulations. This work serves as an initial step in order to provide a framework for systems with arbitrary arrivals and variable transmission durations and it can be utilized for the derivation of the delay distribution and the delay violation probability.Comment: ISWCS 201

    Stable Throughput and Delay Analysis of a Random Access Network With Queue-Aware Transmission

    Full text link
    In this work we consider a two-user and a three-user slotted ALOHA network with multi-packet reception (MPR) capabilities. The nodes can adapt their transmission probabilities and their transmission parameters based on the status of the other nodes. Each user has external bursty arrivals that are stored in their infinite capacity queues. For the two- and the three-user cases we obtain the stability region of the system. For the two-user case we provide the conditions where the stability region is a convex set. We perform a detailed mathematical analysis in order to study the queueing delay by formulating two boundary value problems (a Dirichlet and a Riemann-Hilbert boundary value problem), the solution of which provides the generating function of the joint stationary probability distribution of the queue size at user nodes. Furthermore, for the two-user symmetric case with MPR we obtain a lower and an upper bound for the average delay without explicitly computing the generating function for the stationary joint queue length distribution. The bounds as it is seen in the numerical results appear to be tight. Explicit expressions for the average delay are obtained for the symmetrical model with capture effect which is a subclass of MPR models. We also provide the optimal transmission probability in closed form expression that minimizes the average delay in the symmetric capture case. Finally, we evaluate numerically the presented theoretical results.Comment: Submitted for journal publicatio

    Throughput of a Cognitive Radio Network under Congestion Constraints: A Network-Level Study

    Full text link
    In this paper we analyze a cognitive radio network with one primary and one secondary transmitter, in which the primary transmitter has bursty arrivals while the secondary node is assumed to be saturated (i.e. always has a packet waiting to be transmitted). The secondary node transmits in a cognitive way such that it does not impede the performance of the primary node. We assume that the receivers have multipacket reception (MPR) capabilities and that the secondary node can take advantage of the MPR capability by transmitting simultaneously with the primary under certain conditions. We obtain analytical expressions for the stationary distribution of the primary node queue and we also provide conditions for its stability. Finally, we provide expressions for the aggregate throughput of the network as well as for the throughput at the secondary node.Comment: Presented at CROWNCOM 201

    On the preservation of unitarity during black hole evolution and information extraction from its interior

    Full text link
    For more than 30 years the discovery that black holes radiate like black bodies of specific temperature has triggered a multitude of puzzling questions concerning their nature and the fate of information that goes down the black hole during its lifetime. The most tricky issue in what is known as information loss paradox is the apparent violation of unitarity during the formation/evaporation process of black holes. A new idea is proposed based on the combination of our knowledge on Hawking radiation as well as the Einstein-Podolsky-Rosen phenomenon, that could resolve the paradox and spare physicists from the unpalatable idea that unitarity can ultimately be violated even under special conditions.Comment: 8 pages, no figure
    corecore